If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2-9t+750=0
a = -4.9; b = -9; c = +750;
Δ = b2-4ac
Δ = -92-4·(-4.9)·750
Δ = 14781
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14781}=\sqrt{1*14781}=\sqrt{1}*\sqrt{14781}=1\sqrt{14781}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-1\sqrt{14781}}{2*-4.9}=\frac{9-1\sqrt{14781}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+1\sqrt{14781}}{2*-4.9}=\frac{9+1\sqrt{14781}}{-9.8} $
| Y^2+5y+1y=-2 | | 49=7/4v | | 9d+2d-3d+8=6d | | 3+1/x+2=4 | | c+1/6=3/8 | | 0=24x^2-336x+864 | | 6x−35=3x+53∘ | | 2(x-2)-3(2x-1)=4 | | m-2/3=5/6 | | x-21/2=85/8 | | 12=|m+8| | | 11(x-3)+4(2x+1)=5(3x-)+13 | | w^2−w−20=0 | | w2−w−20=0 | | 4(x+1)+3(x+2)=7(x+1)-5 | | 8=x+7/3 | | 5/8+p=1/6 | | -6+(5-2m)=2-(1-3m) | | 6x+(2x-3)+(x-1)=76 | | 15-(d-4)=-100 | | 13-(5-4m)=-7+(2-m) | | 2(z+5)-2(5-z)=8 | | 3(2z-5)-3(1-2z)=12 | | -5p^2+8p-7=-6p^2+1+p | | q^2+5q=14 | | 4x+9-3x=-7x+6+5x | | 2^(x-3)=72 | | 2^x-3=72 | | X=5/3y+1 | | x^2+5x-22=-8 | | 5.2b+4.6=8.75 | | (9x+4)(2x^2-17x-9)=0 |